開啟輔助訪問
 找回密碼
 立即加入

何謂『焚風』?

簽到天數: 3736 天

[LV.Master]伴壇終老

2010-11-17 11:31 | 顯示全部樓層
焚風(Föhn wind)是出現在山脈背面的乾熱風,大規模的氣流遇山被迫抬升且翻山越嶺後,下山的氣流變成乾燥而高溫的風稱「焚風」。焚風往往以陣風形勢出現,從山上沿山坡向下吹。

焚風示意圖.bmp
  在中國,焚風地區也到處可見。如天山南北、秦嶺腳下、川南丘陵、金沙江河谷、大小興安嶺、太行山下、皖南山區、臺灣的中央山脈都能見到其蹤跡。世界各地幾乎所有的山脈都有類似的風,在各個地方它也有不同的名字。這種乾熱的風,在台灣有多種的名稱,如「火燒風」、「麒麟風」、「東霸風」等。

名稱
焚風這個名稱來自拉丁語中的favonius(溫暖的西風),德語中演變為Föhn,主要用來指阿爾卑斯山的焚風。此外在世界各地對類似的現象還有類似的地區性的稱呼,比如在智利的安第斯山脈這樣的焚風被稱為帕爾希風(Puelche),在阿根廷同樣的焚風被稱為Zonda,美國洛磯山脈東側的焚風叫欽諾克風(Chinook),在加利福尼亞州南部被稱為聖安娜風(Santa Ana),在墨西哥被稱為倉裘風(Chanduy)。此外在其他許多地區還有許多不同的稱呼。
布拉風是一種類似焚風的冷風,布拉風的名字來源於克羅地亞和蒙特內格羅的愛琴海岸。

理論
熱力學理論

按照熱力學理論焚風與其他風一樣是由於氣壓不同而形成的,山背風面的氣壓低。在迎風面空氣上升,溫度乾絕熱下降(隨氣壓的下降溫度下降,熱量不散發),這個下降速度約為每上升1000米氣溫下降6攝氏度。當氣溫下降到露點時空氣的相對濕度達到100%,在這種情況下空氣繼續上升就開始進入濕絕熱降溫的過程了。在這個過程中水不斷凝結出來,而空氣的相對濕度保持在100%。這個過程中氣溫下降的速度為略小於0.6度/100米,接近0.5度/米使得溫度相比沒有焚風的時候下降來得緩慢。以至於焚風會使在足夠高的山頂上出現相對高溫的情況。凝結出來的水在山的迎風面形成雲,假如空氣繼續不斷上升會產生雨和雪。從山的背風面看上去可以看到山脊上形成一堵雲牆,而它的後面則是藍天。假如焚風非常強的話,也有可能將降雨區帶到背風面。
在山脊背後空氣開始下降,按照這個理論空氣下降的原因是山兩邊的氣壓差。在下降過程中空氣隔熱升溫(隨氣壓上升而溫度上升,不吸收熱),但由於空氣的相對濕度隨溫度上升而下降,這個升溫過程完全是幹的,沒有水蒸發的過程,因此升溫的速度是1度/100米,比空氣在迎風面上升時要高。同時空氣的相對濕度不斷降低,造成了乾燥的熱風。
熱力學理論的缺陷
熱力學理論非常形象地解釋了焚風形成的原因,因此它也常常被列入教科書中。但是這個理論有許多不足之處,比如:
1.        有時焚風在迎風面沒有形成雲或降水的情況下也會形成
2.        有時迎風面上升的空氣並不是在背風面下降的空氣,有時迎風面上升的空氣甚至會流回。
此外熱空氣下降也是一個不容易理解的事。
形成焚風的平面圖:
forcastusehotwind0201.gif
形成焚風的剖面圖:
foehn.gif
動力學理論
雖然空氣是氣體,但是有時空氣也顯示出液體的特性。在許多情況下空氣中會形成大氣波。大氣波是許多不同的力,比如大氣壓力差、寇里奧利力、引力和阻力相互影響造成的。在許多大氣不穩定狀態下會有大氣波產生。今天對焚風的解釋主要是一個流體力學的動態學理論。
福祿數
最好的焚風的解釋是一個三維的流體力學模型,在這個模型裏山谷起一個重要的作用。山谷造成的橫向的壓縮對於焚風的形成是非常關鍵的。
在這個模型中福祿數F是一個關鍵的資料。這個數體現出一個流體系統中慣性力與重力之間的關係。
•        F=1的流體稱為臨界流,在這種情況下產生地形波的可能性非常高
•        F<1的流體稱為亞臨界流,氣流無法越過障礙物
•        F>1的流體稱為超臨界流,氣流沒有大的震盪就可以越過障礙物
1.        亞臨界流裏的慣性力占支配地位,在障礙物前流體升高,流速降低,流體的動力能轉化為勢能。流體越過障礙物後勢能又回轉為動能,流體的流速沿障礙物向下加快
2.        超臨界流裏流體在障礙物上方被壓縮,流體的流速因此加快,它的勢能轉化為動能,在越過障礙物後它的動能回轉為勢能
假如氣流獲得足夠的加速度,以及阻擋氣流的障礙物足夠大,所以氣流被足夠強地壓縮的話,那麼本來的亞臨界流可以變成超臨界流,在障礙物的背風面這個超臨界流就會以極高的速度沖下山坡。沖下山坡後它會遇到山坡下本來處於亞臨界流的氣流,從而又轉變為亞臨界流,這個轉變是一個斷續過程,在超臨界流和亞臨界流之間會造成激波。這個激波現象實際上每個人都觀察到過:水龍頭裏的水高速衝擊到面盆裏後會以超臨界流的方式向四方沖流,這個沖流是相當平的,其中幾乎沒有漩渦。但是沖到了一定的距離後它會遇到周圍的亞臨界流流體,造成一個幾乎圓形的激波,這個激波里有非常激烈的漩渦。大氣裏的氣流也是這樣的。不同的是,水流在從超臨界流過渡到亞臨界流時會將其動能施放為熱能,而氣流則保存這個動能,將它轉化為內能。刮焚風的時候可以測量到與上述水龍頭的例子相似的漩渦,說明在刮焚風時地確有超臨界流存在。
駐波
山等地面障礙物可以在大氣中導致地形波。地形波是一種重力波。假如在高空有比較密集的氣流(比如因為山的影響),它們會受重力影響下沉,由於慣性的作用會下沉到周圍空氣比它密集的地方,這樣它會受浮力上升,又由於慣性的作用上浮到周圍空氣比它疏散的地方,再次下沉。這樣的地形波的三維形狀不變,但波內的氣流是在不斷流動的,因此它是一種駐波。

缺口動態
缺口動態是焚風中的一個關鍵元素。假如一座山脈的山脊到處一樣高的話,那麼這個問題是一個二維的問題,但是幾乎所有有強的焚風的山脈比如卡斯凱德山脈、喜馬拉雅山、阿爾卑斯山脈等都有通風的山谷。假如氣流的福祿數不足以使得氣流越過山脊的話,那麼氣流會通過這些山谷流過。
今天的焚風是這樣的:一開始的時候在山脈的兩側和周圍的氣象條件是一個幾乎平行的逆溫氣象。一個低壓靠近山脈的一側(背風側),開始吸引山脈這一側的地面冷空氣,並通過山谷吸引迎風側的地面冷空氣和山上的熱空氣。山谷裏的氣流速度不斷提高。假如低壓的吸引力足夠強的話,那麼在山谷周圍遲早會形成超臨界流,山谷對氣流的壓縮更加加強這個效應。很快山谷裏的氣流就達到了其最高速度。上方的熱空氣也被吸引下沉,在背風的山坡上會形成超臨界流。這個效應不斷向山脊擴展,最後整個山脊上都會形成超臨界流。焚風從山谷開始,擴展到整個山脊。
降雨
降水不是焚風的必要條件,1984年發表的一個統計表明,在阿爾卑斯山脈10%的焚風沒有降雨伴隨。
對人的影響
焚風氣候往往會導致心臟和血液迴圈疾病以及其他疾病如頭痛,令人不適等。

焚風的益處
焚風有時也能給人們帶來益處。北美的洛磯山,冬季積雪深厚,春天焚風一吹,不要多久,積雪會全部融化,大地長滿了茂盛的青草,為家畜提供了草場,因而當地人把它稱為“吃雪者”。程度較輕的焚風,能增高當地熱量,可以提早玉米和果樹的成熟期,所以原蘇聯高加索和塔什干綠洲的居民,乾脆把它叫做“玉蜀黍風”。
台灣正在吹焚風的衛星雲圖:
elefoehnf1.jpg
焚風的害處
焚風”在世界很多山區都能見到,但以歐洲的阿爾卑斯山,美洲的洛磯山,原蘇聯的高加索最為有名。阿爾卑斯山脈在刮焚風的日子裏,白天溫度可突然升高20℃以上,初春的天氣會變得像盛夏一樣,不僅熱,而且十分乾燥,經常發生火災。強烈的焚風吹起來,能使樹木的葉片焦枯,土地龜裂,造成嚴重旱災。有時甚至引起森林大火。焚風亦能使山雪融化而造成雪崩或洪水氾濫。

台灣近年案例:
1985尼爾森、白蘭黛颱風侵襲台灣,也在花東地區誘焚風。2007.10強烈颱風柯羅莎侵襲台灣,花東地區,同步出現焚風,花蓮及台東成功創歷年10月新高!柯羅莎颱風逼近宜蘭外海時,位於背風面的花蓮及台東地區,都出現的極為明顯的焚風現象,其中,花蓮及台東成功都紛紛打破了歷年十月份的高溫紀錄!其中,花蓮最高溫達到37度,是10月份的最高溫,也是花蓮高溫記錄的第二名,僅次於1994年8月8號的37.4度,其次,台東成功高溫達到38.5度,也是10月份的最高溫,在歷史高溫記錄上排名第三:僅次於1994年8月8號的39.1度以及同一年的8月7號的38.6度。此外,台東地區下午高溫也達到36.6度,三地的相對濕度也都下降到50%以下,也成為柯羅莎帶來的另外一項紀錄。
陣陣的焚風吹過卑南溪河床,捲起大片的泥沙隨風狂飛,行人一靠近,不只站都站不直,眼睛張不開,嘴巴更是滿嘴沙子。這一陣的風吹沙是吹過了中華大橋,瀰漫了整個台東市區,因此台東市區可以說完全籠罩在風吹沙裡面,記者站在橋上,眼睛都沒有辦法張開,而且一開口,嘴巴裡面都是黃沙。【取自中廣新聞網、東森新聞網】
10868936.jpg

資料來源:維基百科+網路其他介紹
回復

使用道具 舉報

快速回覆
您需要登錄後才可以回帖 登錄 | 立即加入

本版積分規則

本平台僅供學術討論之用,預報應以氣象局為準

威普網站虛擬主機贊助公司

臺灣第一個天氣類型社群平台 即時天氣資訊、精準颱風動態

線上客服
FB傳送訊息
廣告行銷
精準行銷 物超所值
官方粉專
發佈 快速回復 返回頂部 返回列表