簽到天數: 1509 天 [LV.Master]伴壇終老
|
恆星在耗盡了它的燃料之後,依據它在生命期間的質量,如果不計算假設中的奇異星,它的殘骸會是下面三種型態之一。白矮星
1太陽質量的恆星,演化成白矮星之後的質量大約是0.6太陽質量,被壓縮的體積則近似地球的大小。白矮星是非常穩定的天體,因為它向內的重力是與核心的電子產生的電子簡併壓力(這是包立不相容原理導致的結果)達到平衡。電子簡併壓力提供了一個相當寬鬆的極限來抵抗重力進一步的壓縮;因此,針對不同的化學元素,白矮星的質量越大,體積反而越小。在沒有燃料可以繼續燃燒的情況下,恆星殘餘的熱量仍可以繼續向外輻射數十億年。
白矮星的化學成分取決於它的質量。只有幾個太陽質量的恆星,可以進行碳融合產生鎂、氖和少量其它的元素,造成一顆主要成分是氧、氖和鎂的白矮星。在拋棄掉足夠質量的條件下,使它的質量不至於超過錢德拉塞卡極限(見下文);並且在碳燃燒不夠猛烈的條件下,使他免於成為一顆超新星。質量的數量級與太陽相同的恆星無法點燃碳融合的核反應,所產生的白矮星主要成分是碳和氧,而且質量太低,不足以產生重力崩潰,除非在後期能夠增加質量(見下文)。質量低於0.5太陽質量的恆星,連氦燃燒都無法引燃(見前文),因此壓縮後成為白矮星之後的主要成分是氦。
在最後,所有的白矮星都將變成冰冷黑暗的天體,有些人就稱它們為黑矮星。但是目前的宇宙還不夠老,還不足以產生像黑矮星這樣的天體。
如果白矮星的質量能增加至超越錢德拉塞卡極限-對主要成分是碳、氧、氖、和/或鎂的白矮星,是1.4太陽質量,電子簡併壓力將無法抵抗重力,將會因為電子捕獲導致恆星塌縮。取決於化學成分和塌縮前的核心溫度,核心可能會塌縮成為一顆中子星,或是因為引燃碳和氧的燃燒而失控。質量越重的元素越傾向於恆星塌縮,因為需要較高的溫度才能重新點燃核心的燃料,也因此能使核子減輕的電子捕獲過程能使核反應較容易進行;然而,越高的核心溫度越容易造成恆星核反應的失控,這會導致恆星塌縮成為Ia超新星。即使大質量恆星死亡產生的II 型超新星釋放出的總能量更多,這種超新星會比II型超新星還要明亮數倍。這種會導致塌縮的不穩定性使得超過甚至接近1.4太陽質量的白矮星不可能存在(唯一可能的例外是超高速自轉的白矮星,因為離心力的作用抵銷了質量上的問題)。聯星之間的質量轉移可能會造成白矮星的質量接近錢德拉塞卡極限,因而造成不穩定的狀況。
如果在密近雙星系統中有一顆白矮星和一顆普通的恆星,來自較大伴星的氫會在白矮星周圍形成吸積盤,並使得白矮星的質量增加,直到白矮星的溫度增加引發失控的核反應。在白矮星的質量尚未達到錢德拉塞卡極限之前,這種爆發只會形成新星。中子星
當恆星的核心崩潰時,壓力造成電子捕獲,因而使得大多數氫都轉變成為中子。原本使原子核分離的電磁力消失之後(在比例上,如果原子核的大小如同芝麻,原子的大小就如同一個標準足球場),恆星的核心就成為只有中子的緻密球體 (就像是個巨大的原子核),在外面有幾層由簡併物質(主要是鐵的薄層和後續的反應產生的物質)組成的外殼。中子也遵循泡利不相容原理,使用類似電子簡併壓力但更強的力來抵抗重力的壓縮。
像這種被稱為中子星的恆星,是非常小的,直徑的數量級只有10公里,尺寸不會超過一個大城市的大小並且有折極高的密度。它們的自轉週期 由於恆星的收縮而縮得很短(因為角動量守恆),有些高達每秒600轉。隨着這些恆星的高速自轉,每當恆星的磁極朝向地球時,地球就會接到一次脈衝的輻射。像這樣的中子星被稱為波霎,第一顆被發現的中子星就是這種型態的。黑洞
如果恆星的殘骸有足夠大的質量,中子簡併壓力將不足以阻擋恆星塌縮至史瓦西半徑之下時,這個恆星的殘骸就會成為黑洞。現在還不知道需要要多大的質量才會發生這種情況,而目前的估計是在3個太陽質量以上。
黑洞是廣義相對論所預測的天體,而在天文學上的觀測和理論也都支持黑洞的存在。依據廣義相對論傳統的說法,沒有物質或訊息能夠從黑洞的內部傳遞給在外部的觀測者,雖然量子效應允許這種嚴謹的規律產生誤差。
雖然恆星經由塌縮產生超新星的機制還未被充分的了解,也不知道不經過可見的超新星爆炸,恆星是否能夠直接塌縮形成黑洞;還是超新星爆炸之後要先形成中子星,然後再繼續塌縮成為黑洞;從最初的恆星質量到最後的殘骸質量之間的關聯性也不完全的可靠。要解決這些不確定的問題,還需要分析更多的超新星和超新星殘骸。 |
-
|